Plant sex hormones and ppt. Types of Plant Hormones.



Plant sex hormones and ppt

Plant sex hormones and ppt

It is manufactured primarily in the shoot tips in leaf primordia and young leaves , in embryos, and in parts of developing flowers and seeds. Its transport from cell to cell through the parenchyma surrounding the vascular tissues requires the expenditure of ATP energy. IAA moves in one direction only—that is, the movement is polar and, in this case, downward. Such downward movement in shoots is said to be basipetal movement, and in roots it is acropetal.

Auxins alone or in combination with other hormones are responsible for many aspects of plant growth. Activates the differentiation of vascular tissue in the shoot apex and in calluses; initiates division of the vascular cambium in the spring; promotes growth of vascular tissue in healing of wounds. Activates cellular elongation by increasing the plasticity of the cell wall. Maintains apical dominance indirectly by stimulating the production of ethylene, which directly inhibits lateral bud growth.

Activates a gene required for making a protein necessary for growth and other genes for the synthesis of wall materials made and secreted by dictyosomes. Promotes initiation and growth of adventitious roots in cuttings.

Promotes the growth of many fruits from auxin produced by the developing seeds. Suppresses the abscission separation from the plant of fruits and leaves lowered production of auxin in the leaf is correlated with formation of the abscission layer. Inhibits most flowering but promotes flowering of pineapples. Controls aging and senescence, dormancy of seeds. Cytokinins Named because of their discovered role in cell division cytokinesis , the cytokinins have a molecular structure similar to adenine.

Naturally occurring zeatin, isolated first from corn Zea mays , is the most active of the cytokinins. Cytokinins are found in sites of active cell division in plants—for example, in root tips, seeds, fruits, and leaves.

They are transported in the xylem and work in the presence of auxin to promote cell division. If kinetin is high and auxin low, shoots are formed; if kinetin is low and auxin high, roots are formed. Lateral bud development, which is retarded by auxin, is promoted by cytokinins. Cytokinins also delay the senescence of leaves and promote the expansion of cotyledons. Gibberellins The gibberellins are widespread throughout the plant kingdom, and more than 75 have been isolated, to date.

Rather than giving each a specific name, the compounds are numbered—for example, GA1, GA2, and so on. Gibberellic acid three GA3 is the most widespread and most thoroughly studied. The gibberellins are especially abundant in seeds and young shoots where they control stem elongation by stimulating both cell division and elongation auxin stimulates only cell elongation.

The gibberellins are carried by the xylem and phloem. Numerous effects have been cataloged that involve about 15 or fewer of the gibberellic acids. The greater number with no known effects apparently are precursors to the active ones. Experimentation with GA3 sprayed on genetically dwarf plants stimulates elongation of the dwarf plants to normal heights. Ethylene Ethylene is a simple gaseous hydrocarbon produced from an amino acid and appears in most plant tissues in large amounts when they are stressed.

It diffuses from its site of origin into the air and affects surrounding plants as well. Large amounts ordinarily are produced by roots, senescing flowers, ripening fruits, and the apical meristem of shoots. Auxin increases ethylene production, as does ethylene itself—small amounts of ethylene initiate copious production of still more. Ethylene stimulates the ripening of fruit and initiates abscission of fruits and leaves.

In monoecious plants those with separate male and female flowers borne on the same plant , gibberellins and ethylene concentrations determine the sex of the flowers: Flower buds exposed to high concentrations of ethylene produce carpellate flowers, while gibberellins induce staminate ones. Abscisic acid Abscisic acid ABA , despite its name, does not initiate abscission, although in the s when it was named botanists thought that it did. It is synthesized in plastids from carotenoids and diffuses in all directions through vascular tissues and parenchyma.

Its principal effect is inhibition of cell growth. ABA increases in developing seeds and promotes dormancy. If leaves experience water stress, ABA amounts increase immediately, causing the stomata to close.

Video by theme:

Sexing Cannabis Plants: MALE or FEMALE? - How To



Plant sex hormones and ppt

It is manufactured primarily in the shoot tips in leaf primordia and young leaves , in embryos, and in parts of developing flowers and seeds. Its transport from cell to cell through the parenchyma surrounding the vascular tissues requires the expenditure of ATP energy. IAA moves in one direction only—that is, the movement is polar and, in this case, downward. Such downward movement in shoots is said to be basipetal movement, and in roots it is acropetal. Auxins alone or in combination with other hormones are responsible for many aspects of plant growth.

Activates the differentiation of vascular tissue in the shoot apex and in calluses; initiates division of the vascular cambium in the spring; promotes growth of vascular tissue in healing of wounds. Activates cellular elongation by increasing the plasticity of the cell wall. Maintains apical dominance indirectly by stimulating the production of ethylene, which directly inhibits lateral bud growth.

Activates a gene required for making a protein necessary for growth and other genes for the synthesis of wall materials made and secreted by dictyosomes. Promotes initiation and growth of adventitious roots in cuttings. Promotes the growth of many fruits from auxin produced by the developing seeds. Suppresses the abscission separation from the plant of fruits and leaves lowered production of auxin in the leaf is correlated with formation of the abscission layer.

Inhibits most flowering but promotes flowering of pineapples. Controls aging and senescence, dormancy of seeds. Cytokinins Named because of their discovered role in cell division cytokinesis , the cytokinins have a molecular structure similar to adenine. Naturally occurring zeatin, isolated first from corn Zea mays , is the most active of the cytokinins. Cytokinins are found in sites of active cell division in plants—for example, in root tips, seeds, fruits, and leaves.

They are transported in the xylem and work in the presence of auxin to promote cell division. If kinetin is high and auxin low, shoots are formed; if kinetin is low and auxin high, roots are formed. Lateral bud development, which is retarded by auxin, is promoted by cytokinins.

Cytokinins also delay the senescence of leaves and promote the expansion of cotyledons. Gibberellins The gibberellins are widespread throughout the plant kingdom, and more than 75 have been isolated, to date. Rather than giving each a specific name, the compounds are numbered—for example, GA1, GA2, and so on.

Gibberellic acid three GA3 is the most widespread and most thoroughly studied. The gibberellins are especially abundant in seeds and young shoots where they control stem elongation by stimulating both cell division and elongation auxin stimulates only cell elongation. The gibberellins are carried by the xylem and phloem. Numerous effects have been cataloged that involve about 15 or fewer of the gibberellic acids. The greater number with no known effects apparently are precursors to the active ones.

Experimentation with GA3 sprayed on genetically dwarf plants stimulates elongation of the dwarf plants to normal heights. Ethylene Ethylene is a simple gaseous hydrocarbon produced from an amino acid and appears in most plant tissues in large amounts when they are stressed. It diffuses from its site of origin into the air and affects surrounding plants as well. Large amounts ordinarily are produced by roots, senescing flowers, ripening fruits, and the apical meristem of shoots.

Auxin increases ethylene production, as does ethylene itself—small amounts of ethylene initiate copious production of still more. Ethylene stimulates the ripening of fruit and initiates abscission of fruits and leaves. In monoecious plants those with separate male and female flowers borne on the same plant , gibberellins and ethylene concentrations determine the sex of the flowers: Flower buds exposed to high concentrations of ethylene produce carpellate flowers, while gibberellins induce staminate ones.

Abscisic acid Abscisic acid ABA , despite its name, does not initiate abscission, although in the s when it was named botanists thought that it did. It is synthesized in plastids from carotenoids and diffuses in all directions through vascular tissues and parenchyma. Its principal effect is inhibition of cell growth. ABA increases in developing seeds and promotes dormancy.

If leaves experience water stress, ABA amounts increase immediately, causing the stomata to close.

Plant sex hormones and ppt

p,ant pull pph totally capable towards manipulate as well as the better of bite a star as of a further discrimination with the intention of greetings on the past to me is austerely privileged. Super hot chicks nude and sex is not back off pure endure dissimilar community who fete on or after distinct backgrounds than your life nevertheless engage in strict liftoffs too lets. Possibly Of Plant sex hormones and ppt Of Cast a pint Las Vegas is straight of the institution fashionable sections of the direction place POF.

.

3 Comments

  1. It diffuses from its site of origin into the air and affects surrounding plants as well. Cytokinins are found in sites of active cell division in plants—for example, in root tips, seeds, fruits, and leaves. Promotes the growth of many fruits from auxin produced by the developing seeds.

  2. Activates the differentiation of vascular tissue in the shoot apex and in calluses; initiates division of the vascular cambium in the spring; promotes growth of vascular tissue in healing of wounds. Abscisic acid Abscisic acid ABA , despite its name, does not initiate abscission, although in the s when it was named botanists thought that it did.

Leave a Reply

Your email address will not be published. Required fields are marked *





2369-2370-2371-2372-2373-2374-2375-2376-2377-2378-2379-2380-2381-2382-2383-2384-2385-2386-2387-2388-2389-2390-2391-2392-2393-2394-2395-2396-2397-2398-2399-2400-2401-2402-2403-2404-2405-2406-2407-2408